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Channel Model 

 Binary Erasure Channel 

 Message bits are typically packetized. 

 Packets may be corrupted or lost during transmission. 

 e : Erasure 
 a : erasure probability 
 Capacity: 1- a 

 An  average of a  fraction of 
bits are lost in the channel, we 
can at most  recover a 
proportion (1- a) of the bits. 

 

Channel 
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Possibilities for lost data recovery 

 If there is a feedback channel, request the lost packets to be 
retransmitted.  

 This may result in round-trip delays and lots of feedback 
channel use.  

 For broadcast, number of request might be overwhelming! 

 Forward Error Correction (Erasure coding to restore data). 
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Coding theory basics 

 A code 𝐶 over a finite alphabet ∑ of length 𝑛 is a subset of ∑𝑛 
– The elements of 𝐶 are called the codewords in 𝐶. 
– If  |∑|   = 𝑞, 𝐶 is called 𝑞-ary code.  

 A binary code (𝑞 = 2) is a code over the alphabet {0, 1}. 
 

– C1 = {000, 010, 101, 100} 
– C2 = {00000, 01101, 10111, 11011} 

 The maping between codewords and message sequences is 
called “encoding”. The reverse of this operation is called 
“decoding”.  

 Hamming distance:  
– ℎ(𝑥, 𝑦)  = the number of symbols x and y differ. ℎ(10101, 01100)  =  3, 

 Minimal distance of a code 𝐶: 
– 𝑑𝑚𝑖𝑛 𝐶 = min ℎ 𝑥, 𝑦 𝑥, 𝑦 ∈  𝐶, 𝑥 ≠  𝑦}, 

 Theorem 1: A code with minimal distance 𝑑𝑚𝑖𝑛can 
correct 𝑑𝑚𝑖𝑛−1 erasures. 
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Classical Erasure codes 

 Encode an original data of k packets to n code packets. Such a code is 
referred as ( n, k ) block code. 

 Theorem 2: A (𝑛, 𝑘) code with minimal distance 𝑑𝑚𝑖𝑛 satisfies  𝑑𝑚𝑖𝑛≤ 𝑛 − 𝑘
+ 1. (Singleton bound) 

 The decoder needs 𝑛 ≥ 𝑘 code packets to reconstruct the original data.  
 If  𝑛 = 𝑘 , the code is called maximum distance separable (MDS) 

 Redundant packets: n – k . 

 Rate of the code:  r = k/n 

 Overhead: c= n/k  

0 1 2 3 4 5 6 7 8 9 10 

Example: MDS block code (11,8) 

k k n-k 

n Encoding 

Decoding 

Parity packets 
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Classical Erasure codes 

7 

k          message 

Decoding 

k message  

Encoding 

n = ck encoding 

CHANNEL 

 k collected X X X X X X 
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Trivial Binary MDS Erasure codes 

 Repetition coding: (n, k=1) 

I I I I I I I I 

I1 I2 I3 I4 I5 I6 I7 P 

 Parity coding: (n, k=n-1) 

P=∑ Ii 
7
𝑖=1  (mod 2) 

 There is no non-trivial binary MDS code.  
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Non-Trivial MDS Erasure codes 

 One of the well known non-trivial, non-binary MDS code is Reed-
Solomon (RS) codes. RS codes are defined over Galois Fields such as 
GF(2m). 

 Construction is based on a polynomial evaluation. 

 

 

 Evaluate 𝑚(𝑥) at n specific points to form the codeword: 
 

 Encoding Complexity ~  O(ck2) 

 Decoding Complexity ~  O(n log2(n)  log(log(n))) 

 Complexity is also a strong function of the size of the Galois Field over 
which the code is defined. If RS code is defined over GF(2m) and n = 2m -1, 
decoding complexity can be approximated by 

 

Not very easy 

additionsinversionstionsmultiplica mNNNmC  )(2 2

[1] N. Chen and Z. Yan, “Complexity analysis of reed-solomon decoding over GF(2m) without using syndromes,” EURASIP 
Journal on Wireless Communications and Networking, vol. 2008, Article ID 843634, 11 pages, 2008. 

[1] 
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Issues with conventional erasure codes 

 RS code are fixed rate code and thus, its rate must be fixed 
before transmission. 

 In a broadcast scenario, the erasure rate of the channel is not 
known prior to transmission. 

 RS codes are complex to implement, particularly for large block 

lengths n and rate r. 

 If an erased symbol is to be reconstructed, all data must be 
read. In a storage scenario, if each data packet is stored in 
different nodes, all nodes must be accessed  increased 
bandwidth usage. 

 We need a different paradigm for constructing erasure codes, 
possibly with MDS property! 
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Rateless erasure codes 
 Rate-less codes, i.e. there is no predetermined overhead c=n/k. One can generate 

as much code symbols as desired. An instantiation of such a construction is given by 
Luby in 2001, called Luby Transform (LT) codes.  

 Asymptotically optimal: Only n = (1+𝜖)k  coded symbols are enough to recover all k 
information symbols. 

 Simple Encoding: encoded symbols are XORs of data symbols. 

– Pick a degree 𝑑  from the appropriate degree distribution Ω(𝑥)  (a) 

– Randomly pick 𝑑  data symbols. (b) 

– Encode them as encoded symbol by using XOR operations. 

 

d =21
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Rateless erasure codes 

d =22

 Rate-less codes, i.e. there is no predetermined overhead c=n/k. One can generate 
as much code symbols as desired. An instantiation of such a construction is given by 
Luby in 2001, called LT codes.  

 Asymptotically optimal: Only n = (1+ 𝜖)k  coded symbols are enough to recover all k 
information symbols. 

 Simple Encoding: encoded symbols are XORs of data symbols. 

– Pick a degree 𝑑  from the appropriate degree distribution Ω(𝑥) 

– Randomly pick 𝑑  data symbols 

– Encode them as encoded symbol by using XOR operations. 
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Rateless erasure codes 

d =13

 Rate-less codes, i.e. there is no predetermined overhead c=n/k. One can generate 
as much code symbols as desired. An instantiation of such a construction is given by 
Luby in 2001, called LT codes.  

 Asymptotically optimal: Only n = (1+ 𝜖)k  coded symbols are enough to recover all k 
information symbols. 

 Simple Encoding: encoded symbols are XORs of data symbols. 

– Pick a degree 𝑑  from the appropriate degree distribution Ω(𝑥) 

– Randomly pick 𝑑  data symbols 

– Encode them as encoded symbol by using XOR operations. 
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Rateless erasure codes 

d =34

 Rate-less codes, i.e. there is no predetermined overhead c=n/k. One can generate 
as much code symbols as desired. An instantiation of such a construction is given by 
Luby in 2001, called LT codes.  

 Asymptotically optimal: Only n = (1+ 𝜖)k  coded symbols are enough to recover all k 
information symbols. 

 Simple Encoding: encoded symbols are XORs of data symbols. 

– Pick a degree 𝑑  from the appropriate degree distribution Ω(𝑥) 

– Randomly pick 𝑑  data symbols 

– Encode them as encoded symbol by using XOR operations. 
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Rateless erasure codes 

d =25

 Rate-less codes, i.e. there is no predetermined overhead c=n/k. One can generate 
as much code symbols as desired. An instantiation of such a construction is given by 
Luby in 2001, called LT codes.  

 Asymptotically optimal: Only n = (1+ 𝜖)k  coded symbols are enough to recover all k 
information symbols. 

 Simple Encoding: encoded symbols are XORs of data symbols. 

– Pick a degree 𝑑  from the appropriate degree distribution Ω(𝑥) 

– Randomly pick 𝑑  data symbols 

– Encode them as encoded symbol by using XOR operations. 
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Simple Decoding 

• Coded symbols are sent over a binary erasure channel.  

• Decoder uses a Belief Propagation (BP) algorithm. 
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Degree distribution 

 Degree distribution is chosen such that the decoding of the whole 
message block (k symbols) is ensured with high probability. 
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Efficiency & Complexity 

 It is shown that using RSD, the probability that the decoding 

process will succeed after decoding 𝑘 + 𝑂( 𝑘  ln2(𝑘/𝛾)) is 

1 − 𝛾. 𝜖 = 𝑂( 𝑘  ln2(𝑘/𝛾))/𝑘   

 The complexity of decoding is related to average number of 
XOR operations i.e., average number of edges in the graph 

𝑂 𝑘 ln
𝑘

𝛾
. 

 OBSERVATIONS: 
– Rateless construction. 

– Encoding/Decoding is not linear in k. 

– Asymptotically optimal (MDS) i.e., requires large n for vanishing 𝜖.  

– We do not need to access all data symbols to resurrect a particular lost 
code symbol. 
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How to achieve linear complexity? 

 How about we have a distribution that the maximum degree is fixed, 
i.e., does not scale with increasing k.  

 Let us assume we have the following degree distribution: 

Ω 𝑥 = 0.007969𝑥 + 0.49357𝑥2 + 0.1662𝑥3  + 0.072646 𝑥4 + 0.082558𝑥5 + 0.056058𝑥8 
+0.037229𝑥9 + 0.05559𝑥19 + 0.025023𝑥65 + 0.003135𝑥66 

[after erasures] 

Error Floor 
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How to achieve linear complexity and no error floor? 

 The way to go is concatenation: Raptor Codes. 

A precode with linear encoding/decoding complexity 

 Decoder for LT code decodes up to some fraction of the input symbols and 
then the rest of the erasures are corrected by the precode.  

 The overall complexity is linear with k 

 However, the overhead is increased due to the additional coding stage. 
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How to achieve linear complexity and no error floor? 

 Raptor codes do not only achieve linear complexity, but also achieve 
low over head, near-optimal performance. 

 They become to be part of  3rd Generation Partnership Project for 
use in mobile cellular wireless broadcast and also used by DVB-H 
standards for IP datacast to handheld devices 

[after erasures] 

Infinite  
complexity 

linear 
complexity 
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Evolution of Erasure Codes 

Algebraic/Optimal (MDS) 

Probabilistic/Near-Optimal 

Rateless 

LT/Raptor 
Online 

LDPC/Tornado 

Reed-Solomon/ 
Replication 
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Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem” 

(5, 3) MDS code 

(5, 3) MDS code 

(5, 3) MDS code 

(5, 3) MDS code 

(5, 3) MDS code 
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Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem” 

PARITY 
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Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem” 

PARITY 

A disk failure!!! 



Quantum Confidential | 

Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem” 

PARITY 

To repair the disk, we need to access all data 
in other disks: 4X more network repair overhead 
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Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem”. 

 We need efficiently repairable erasure codes.  

Replication  
(Repetition coding) Algebraic MDS codes 

Least Efficient Most Efficient 

Fastest access/repair Slowest access/repair 
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Evolution of erasure codes for data storage 

 Classical MDS erasure codes are suboptimal for distributed 
storage networks because of the “repair problem”. 

 We need efficiently repairable erasure codes.  

Replication  
(Repetition coding) Algebraic MDS codes 

Least Efficient Most Efficient 

Fastest access/repair Slowest access/repair 

With the evolution of erasure codes, 
A small sacrifice in performance leads to efficiently  

repairable good codes. 
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A Case study – Facebook File system  
[Locally repairable codes] 

 Let us use a standard (14,10) MDS code. 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Calculate local parities:  

– 𝑆1 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐4𝑋4 + 𝑐5𝑋5 

– 𝑆2 = 𝑐6𝑋6 + 𝑐7𝑋7 + 𝑐8𝑋8 + 𝑐9𝑋9 + 𝑐10𝑋10 

 Also choose coefficients such that 
– 𝑆1 + 𝑆2 = 𝑆3 [Implied parity – Not stored!] 

 DISADVANTAGE : Extra Storage Requirement!!! 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 

Overhead (RS) = 
14/10 = 1.4 

Overhead (LRC)= 
14/10 = 1.6 
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A Case study – Facebook File system  
[Locally Repairable Codes - LRC] 

 Let us use a standard (14,10) MDS code. 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Calculate local parities:  

– 𝑆1 = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3 + 𝑐4𝑋4 + 𝑐5𝑋5 

– 𝑆2 = 𝑐6𝑋6 + 𝑐7𝑋7 + 𝑐8𝑋8 + 𝑐9𝑋9 + 𝑐10𝑋10 

 Also choose coefficients such that 
– 𝑆1 + 𝑆2 = 𝑆3 [Implied parity – Not stored!] 

 DISADVANTAGE : Extra Storage Requirement!!! 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 

Overhead (RS) = 
14/10 = 1.4 

Overhead (LRC)= 
16/10 = 1.6 
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A Case study – Facebook File system  
[Locally Repairable Codes - LRC] 

 Suppose a failure occurs!  

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Recovery equation: 

– 𝑋2 = 𝑐2
−1 𝑆1 − 𝑐1𝑋1 − 𝑐3𝑋3 − 𝑐4𝑋4 − 𝑐5𝑋5  

 Number of blocks that need to be accessed and read: 5! 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 
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A Case study – Facebook File system  
[Locally Repairable Codes - LRC] 

 Suppose a failure occurs!  

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Recovery equation: 

– 𝑋9 = 𝑐9
−1 𝑆2 − 𝑐6𝑋6 − 𝑐7𝑋7 − 𝑐8𝑋8 − 𝑐10𝑋10  

 Number of blocks that need to be accessed and read: 5! 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 

𝑋2 

𝑐2 
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A Case study – Facebook File system  
[Locally Repairable Codes - LRC] 

 Suppose a failure occurs!  

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Recovery equation: 

– 𝑃4 = 𝑝4
−1 −𝑆1 −𝑆2 −𝑝1𝑃1 − 𝑝2𝑃2 − 𝑝3𝑃3  

 Number of blocks that need to be accessed and read: 5! 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 

𝑋2 

𝑐2 
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A Case study – Facebook File system  
[Locally Repairable Codes - LRC] 

 Suppose a failure occurs!  

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑃1 𝑃2 𝑃3 𝑃4 

First 5 file blocks Second 5 file blocks 4 MDS parity blocks 

𝑆1 𝑆2 𝑆3 
Local XOR parity 

Local XOR parity Implied parity 

 Single failure : MIN:5 , MAX:5 

 Double failures: MIN:9, MAX: 12 

 Tripple failures: MIN: 12, MAX:12 

𝑐1 𝑐2 𝑐3 𝑐4 
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑐10 𝑝1 𝑝2 𝑝3 𝑝4 

𝑋2 

𝑐2 

 Single failure : MIN:12, MAX:12 

 Double failures: MIN:12, MAX: 12 

 Tripple failures: MIN: 12, MAX:12 

LRC (16, 10) 

RS (14, 10) 
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Block locality 

 Definition: (Block locality) An (𝑛, 𝑘) code has a block locality 𝑙, 
when each block/unit is a function of at most 𝑙 other blocks.  

 Example: An (𝑛, 𝑘) RS code has a block locality of 𝑘. 

 We desire erasure codes with block locality 𝑙 <<  𝑘 

 Theorem 3: (locally repairable codes (LRC)) There exists (𝑛, 𝑘) 
locally repairable codes with block locality ln (𝑘) that can 

correct 𝑛 − (1 + 𝜖)𝑘 erasures where 𝜖 =
1

ln (𝑘)
− 

1

𝑘
. 

– Example: LT codes has an average symbol degree of ln (𝑘) and therefore has an 
average block locality of ln (𝑘) while achieving an optimal performance 
asymptotically.  
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How all these measures reflect to system performance? 

 A storage system’s reliability is usually measured in terms of mean time to failure 
(MTTDL) values.  

 Assume we have n disks, m of which are used for data storage and c = n –m  are 
used parity (failure protection). 

 Conventionally, a Markov model is used (with some correction factors) to predict 
the MTTDL values.  

 

 

 

 

 

 

 Each state represents the number of operational disks in the array. Transitions 
happen with each component having constant failure and repair rates 𝜆 and 𝜇, 
respectively. 
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Reliability and the Markov Model 

 This model assumes an (𝑛, 𝑚)  MDS code that can correct up 
to 𝑐 =  𝑛 − 𝑚  erasures. 
–  ASSUMPTIONS: 

1) Disk failures are independent 

2) Each disk failure and repair happens based on an exponential distribution (Poisson 
random process).  

 MTTDL is the expected time to enter state F. 

 

 

 

 
 

 Slight changes (a single disk repair at a time) can be made to the model, 
however these changes only slightly effect the MTTDL value.   

𝑃𝑖 𝑡 : 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑅 𝑡 =   𝑃𝑗(𝑡)

𝑚+𝑐

𝑗=𝑚

 Reliability function 

𝑀𝑇𝑇𝐷𝐿 =   𝑅 𝑡 𝑑𝑡
∞

0

 MTTDL 
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Reliability and the Markov Model 

 Due to assumption 1 and 2,  

– 𝑀𝑇𝑇𝐹 = 1/ 𝜆 and 𝑀𝑇𝑇𝑅 = 1/𝜇 

 Let 𝜔 =
𝜇

𝜆
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝑅
  . 

 We have,  

𝑀𝑇𝑇𝐷𝐿 =  
𝜔𝑐

𝜆 𝑚 
𝑚 + 𝑐
𝑐

 

[2] W. Burkhard, and J. Menon, "Disk array storage system reliability".  
Proceedings of the International Symposium on Fault-tolerant Computing, pgs.432-441, 1993.. 

[1] 

 For 𝑐 =  1 (RAID 5) 

𝑀𝑇𝑇𝐷𝐿 =  
𝜇

𝜆2 𝑚 (𝑚 + 1)
=

𝑀𝑇𝑇𝐹2

 𝑚 𝑚 + 1 𝑀𝑇𝑇𝑅
 

 For 𝑐 = 2 (RAID 6) 

𝑀𝑇𝑇𝐷𝐿 =  
𝜇2

𝜆3  
1
2𝑚 (𝑚 + 1)(𝑚 + 2)

=
𝑀𝑇𝑇𝐹3

1
2𝑚 (𝑚 + 1)(𝑚 + 2)𝑀𝑇𝑇𝑅2
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Numerical Results [2] 

Erasure Code Storage overhead Repair traffic MTTDL ( days ) 

Replication (3, 1) 3x 1x 2.3e+10 

RS (14, 10) – optimal 1.4x 10x 3.3e+10 

LRC (16, 10) 1.6x 5x 1.2e+15 

[3] M. Sathiamoorthy, M. Asteris, D.S. Papailiopoulos, A.G. Dimakis, R. Vadali, S. Chen, and D. Borthakur. Xoring 
elephants: Novel erasure codes for big data. In Proceedings of the VLDB Endowment, 2013 
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Evolution of Erasure Codes 

Algebraic/Optimal (MDS) 

Probabilistic/Near-Optimal 

Rateless 

LT/Raptor/ 
Online 

LDPC/Tornado 

Reed-Solomon/ 
Replication 

LRC 

Codes with  
low locality/Near-Optimal 
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OPTIMIZATION 

OF LT CODES 

FOR IMAGE 

TRANSFER 
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Source quality assessment: Image compression  
-Basics 

 Given two images I and I’ (original and the noisy version), the 
distortion will be measured by Mean Square Error (MSE): 

where       and      are dimensions of the image.  

 Peak Signal to Noise Ratio (PSNR in dB) is defined to be  

where            is the maximum possible intensity value of the image. 

 For monochromatic gray scale image: 

 Lower MSE (larger PSNR) means better image quality.  

 “Source rate” means the average number of bits spent per pixel (bpp). For a 
given PSNR value, the lower the source rate is, the better the compression will 
be. 
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Progressive Source Compression 
-Introduction 

 4% gives you only a low quality representation of the source. 

0.01bpp, PSNR=22.55dB 

Progressive bit stream 
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 20% gives better image quality compared to 4% case.  

0.01bpp, PSNR=22.55dB 0.05bpp, PSNR=27.17dB 

Progressive Source Compression 
 -Introduction 

Progressive bit stream 
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 Using only 40% of the total bit stream, a good quality image is obtained. 

0.01bpp, PSNR=22.55dB 0.05bpp, PSNR=27.17dB 0.1bpp, PSNR=29.81dB 

Progressive Source Compression 
 -Introduction 
Progressive bit stream 
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Progressive Source Compression 
 -Introduction 

 At 100%, the image quality is improved further but no major difference from 40%. 
 Examples: SPIHT, EZW, JPEG2000 etc. 
 Disadvantage: Very sensitive to bit errors. 
 Unequal Error Protection (UEP) is achieved by channel coding. 

0.01bpp, PSNR=22.55dB 0.05bpp, PSNR=27.17dB 0.1bpp, PSNR=29.81dB 0.25bpp, PSNR=33.68dB 

Progressive bit stream 
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Error Propagation 

Single bit is in error  

0.25bpp=65536bits. 

Just use 1499 bits 

20000th bit position  

1500th bit position  

  Decode all 65536bits  

Just use19999 bits 

  Truncated  

5000th bit position  Just use 4999 bits 

PSNR 24.21dB PSNR 22.60dB 

PSNR 21.26dB PSNR 18.71dB 

PSNR 26.28dB PSNR 28.66dB 

a) 

b) 

c) 

Lena Image 
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Rate-Distortion Curve 

 In a lossy data compression, R-D curve pictures the relationship 
between the source rate and the distortion for a given source 
and encoder/decoder pair.  

Source 
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Design objective of the erasure code 

 Decoding the whole message block? If 𝑐 <  1, this is not even 
possible with optimal codes! 

 Decoding a fraction of the message block? What fraction? 

Message block 

Message block 

 Both have the same number of unrecoverable errors. However 
b) will provide better image quality! 

 Need unequal protection/unequal recovery time. 

a) 

b) 
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Belief Propagation 

 Let us observe the following:  

– Decoding stage 1:  A degree-1 check node decodes an information symbol. 

– Decoding stage 2:  Some of the degree-2 check nodes decode two information symbols. 

– Decoding stage 3:  A degree-3 check node decodes an information symbol. 

 Conclusion: low degree coded symbols decode information symbols earlier (early iterations) 
in the decoding algorithm.  

 This can be used for prioritized decoding. 
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Idea 

 First step: divide the message block into multiple subblocks ( 𝑟 subblocks). 

𝑠1 𝑠2 𝑠𝑗  𝑠𝑟  

 Second step: For each symbol generated: Choose a degree according to a suitable degree 
distribution. 

 Let 𝑝𝑗,𝑖 be the conditional probability of choosing any information symbol in 𝑠𝑗  given the 
degree of the coded symbol is i.  

d = 7 

 Second step: Choose edges according to 𝐏𝑟 𝑥 𝑘 

[4] S. S. Arslan, P. Cosman, and L. Milstein, “Generalized 
unequal error protection LT codes for progressive data 
transmission,” IEEE Trans. Image Processing, vol. 21, no. 8, pp. 
3586–3597, Aug. 2012. 

𝑘 
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Idea 

 Number of unknowns: 𝑟 − 1 𝑘 i.e., it scales with 𝑘. 

 To reduce the number of unknowns, we introduce an exponential 
dependence: 

• Number of parameters are reduced to 3(𝑟 − 1). 

Motivation: exponential-like RD characteristics  
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Idea 
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Simulation result 

A competitor            

, r = 2 
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Simulation result 

A competitor            

A competitor         

A competitor_𝜶        

, r = 2 
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Conclusions 

 Depending on the application, the evolution of erasure codes 
have taken different directions. 

 Different types of erasure codes are considered for different 
types of applications. 

 For storage applications, main trend is to design codes with 
near-optimal performance in terms of efficiency with reduced 
bandwidth requirements while making sure that the error 
probabilities are under some target. 

 For multimedia applications, main trend is to maximize the 
transfer multimedia quality or minimize the distortion.  

 Optimization of the parameters of the erasure code can 
increase performance.  
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